Unit Test-4: "Solution and Solubility"

Multiple choice $=$	$/ 8$
Fill in the blank $=$	$/ 7$
What if Scenarios $=$	$/ 7$
Short answer $=$	$/ 28$
Total:	$/ 50$

A: Multiple Choice: Put your answers in the boxes below.

| 1. | 2. | 3. | 4. | 5. | 6. | 7. | 8. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

1. Acids have a lot of these floating around?
a. Hydrogens
b) Hydrogen Ions
c) Hydroxide Ions
d) Any Negative ions
2. Bases have lots of these floating around?
a. Hydrogens
b) Hydrogen Ions
c) Hydroxide Ions
d) None of these
3. Acids have a pH in the range of?
a. $\mathrm{pH}=7$
b) $\mathrm{pH}=0-6.9$
c) $\mathrm{pH}=0-14$
d) $\mathrm{pH}=7 \cdot 1-14$
4. Bronstead Lowery theory states that bases are?
a. Any substance that can accept an OH^{-1} ion.
b. Any substance that gives off an H^{+1} ion.
c. Any substance that gives off an OH^{-1} ion
d. Any substance that can accept an H^{+}ion
5. An acid and a base mixed together make?
a. Water and hydrogen gas
b) Water
c) NaCl
d) Salt and water
6. Which of the following chemicals would be considered a strong Base?
a. CH_{4}
b. HOH
c. HCl
d. $\mathrm{Mg}(\mathrm{OH})_{2}$
7. Acids have many different names....which of the following is INCORRECRT?
a. Proton
b. Hydronium ion
c. Hydrogen gas
d. Hydrogen ion
8. The Liquid portion that a solid is dissolved in is called the...?
a. Solute
b. Solvent
c. Water
d. Solution

9. Fill in the blank test:

Put your answer on the line provided.
(Total=
a)
__The name of the glassware apparatus that chemicals (solid or liquid) are added to then filled with water to the proper mark to make an accurate solution?
b) \qquad A 6 L sol'n of water has 3 mols of CO_{2} in it, If 12 L of water are added to the solution then, How many moles are in the new solution?
c) \qquad Find the concentration of the Cation in 1.5 M of BaCl_{2}. (pg 448 Q 1$)$
d) \qquad When doing a titration, name the glassware used to determine the volume of a know concentration used to neutralization a sample?
e) \qquad The name of the glassware used to suck up accurately a certain amount of liquid from a stock solution?
f) \qquad Calculate the $\mathbf{\mathbf { p H }}$ of a solution of Vinegar where the Hydrogen ion concentration is $7.9 \times 10^{-9} \mathrm{~mol} / \mathrm{L}$ ($\mathbf{2}$ marks)

10. What if Scenarios...Fill in the blank:

Fill in the blanks with the words INCREASE or DECREASE or NOTHING for the following sentences below
 (Total=

a. \qquad What would happen to your $\% \mathrm{v} / \mathrm{v}$ of your vinegar sample solution if you unknowingly made the titration solution of NaOH stronger than it should have been.
b. \qquad Your sample was still wet in the filter in your \% yield lab, the \% yield would?
c. \qquad You added more excess chemical in your \% yield lab. The \% yield would?
d. \qquad You added more limiting chemical in your \% yield lab. The \% yield would?
e. \qquad If your titrated acid sample was too pink then how would that affect your $\% \mathrm{v} / \mathrm{v}$?
f. \qquad Water was used to wash down the sides of an Erlenmeyer sample flask during a titration.
g. \qquad If accidentally/ unknowingly added extra vinegar to your vinegar sample during a titration??

Short Answer: (Show work for full marks)

1. If 775 ml of a 3 M solution of CaCl_{2} was added to 500 mL of a 4 M solution of AgNO_{3} then how much AgCl should be made?
(Total= $/ 4$)

2. Fructose $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ is a natural sugar in apple juice. A person with diabetes must be aware of the quantity of sugar she consumes. The amount concentration of fructose in a certain brand of apple juice is $0.67 \mathrm{~mol} / \mathrm{L}$. What mass of fructose is present in a 250 ml bottle of apple juice? (pg401 Q3) (Total= /3)

3. A 250 ml sample of tap water is found to contain 12 ppb of an antibiotic. Determine the mass of the antibiotic in the sample. (pg 410 Q3)
(Total= $/ 3$)

4. Titration: Use the data below to determine the $\mathrm{mol} / \mathrm{L}$ then the $\% \mathrm{v} / \mathrm{v}$ of acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ in a sample of vinegar Reinhardt's vinegar.
$2 \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{l})<-------->2 \mathrm{H}-\mathrm{OH}(\mathrm{l})+\mathrm{Ca}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}(\mathrm{aq})$

$$
\begin{aligned}
& {\left[\mathrm{Ca}(\mathrm{OH})_{2}\right] \text { titration solution }=6 \mathrm{M}} \\
& \text { Final reading on burette }=20 \mathrm{ml} \\
& \text { Initial reading on burette }=5 \mathrm{ml} \\
& \text { Volume of Acetic acid sample }=35 \mathrm{mls} \\
& \text { Density of } \mathrm{H}_{2} \mathrm{O}=1.0 \mathrm{~g} / \mathrm{ml} \\
& \text { Density of } \mathrm{CH} \mathrm{C}_{3} \mathrm{COOH}(\mathrm{l})=1.045 \mathrm{~g} / \mathrm{ml} \\
& \text { Density of } \mathrm{Ca}(\mathrm{OH})_{2}=1.6 \mathrm{~g} / \mathrm{ml} \\
& \text { Density } \mathrm{Ca}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)_{2}=2.21 \mathrm{~g} / \mathrm{ml} \\
& \text { Molar mass of } \mathrm{Ca}(\mathrm{OH})_{2}=74.09 \mathrm{~g} / \mathrm{mol} \\
& \text { Molar mass of } \mathrm{CH}_{3} \mathrm{COOH}=60.06 \mathrm{~g} / \mathrm{mol} \\
& \text { Molar mass Ca }\left(\mathrm{CH}_{3} \mathrm{COOH}\right)_{2}=158.16 \mathrm{~g} / \mathrm{mol} \\
& \text { Mass of acetic acid sample and flask }=153 \mathrm{~g}
\end{aligned}
$$

5.

A saline drip bag used by patients in hospitals have a sodium chloride concentration of $0.145 \mathrm{~mol} / \mathbf{L}$. If the patient requires $\underline{\mathbf{2 0 0 0} \mathbf{m l}}$ of the salt solution, then calculate how you would make the solution using the starting materials below. (making from a solid? Liquid?)

Method\#1:

a. A 2 kg jar containing pure NaCl solid salt crushed into powder. \quad (Total= $\quad / 3$)

Calculations:

Method\#2:

b. A 5L stock solution of $\mathbf{6 M ~ N a C l}$

Calculations:

6. If you mixed 0.398 g of $\mathrm{Ca}(\mathrm{OH})_{2}$ (Molar mass $=74.09 \mathrm{~g} / \mathrm{mol}$) in 250 ml of water then what would the $\mathbf{p H}$ be assuming all the base is strong? (4)

Equations and Data

$>\mathrm{ppm}=($ mass of solute $/$ mass of solution $) \times 10^{6}$
$>\mathrm{ppb}=($ mass of solute $/$ mass of solution $) \times 10^{9}$
> $\mathrm{C}=\left(\mathrm{V}_{\text {solute }} / \mathrm{V}_{\text {sol'n }}\right) \times 100 \%$
$>\mathrm{C}=\left(\operatorname{Mass}(\mathrm{g})_{\text {Solute }} / \mathrm{V}(\mathrm{ml})_{\text {sol'n }}\right) \times 100 \%$
$>\mathrm{C}=\mathrm{mol} / \mathrm{L}$
>1 mole $=6.02 \times 10^{23}$
> 1 nanogram $=10^{-9} \mathrm{~g}$
$>1 \mathrm{mmol}=10^{-3} \mathrm{~mol}$
$>1 \mathrm{~g}$ water $=1 \mathrm{ml}$ water $@$ regular room temp
> density= mass/volume
> $\mathrm{pH}+\mathrm{pOH}=14$
> $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
> $\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$

