Name:

Date: June 8th 2018

Unit Test-4: "Solution and Solubility"

0

A: Multiple Choice: Put your answers in the boxes below.

/	8	1.	2.	3.	4.	5.	6.	7.	8.
1.		have a lot o Hydrogens		ing around? Hydrogen Ions	c) H	ydroxide Ions	d) .	Any Negative	ions
2.		have lots of Hydrogens		ng around? Hydrogen Ions	c) H	ydroxide Ions	d) 1	None of these	
3.		have a pH in pH=7 b	-		= 0-14	d) pH = 7.1	-14		
4.	a. b. c.	Any substa Any substa Any substa	ance that car ance that giv ance that giv	ates that <u>bases</u> accept an OH res off an H^{+1} i res off an OH^{-1} accept an H^{+}	^{[-1} ion. on. ion				
5.		<u>id</u> and a <u>bas</u> Water and			er c)	NaCl d) S	alt and wat	er	
6.	a. b. c.	n of the follo CH4 HOH HCl Mg(OH)2	owing chemi	cals would be	considered	a <u>strong Bas</u>	2?		
7.	a. b. c.	have many Proton Hydronium Hydrogen	n ion gas	meswhich c	of the follow	ving is <u>INCO</u>	RRECRT?	2	
8.	a.	<mark>iquid portic</mark> Solute Solvent Water	on that a sol	id is dissolved	in is called	the?			

- c. Water
- d. Solution

9. Fill in the blank test:

Put your answer on the line provided.

- a) ______The name of the glassware apparatus that chemicals (solid or liquid) are added to then filled with water to the proper mark to make an accurate solution?
 b) _____A 6L sol'n of water has 3mols of CO₂ in it, If 12L of water are added to the solution then, How many moles are in the new solution?
 c) _____Find the concentration of the Cation in 1.5 M of BaCl₂. (pg 448 Q1)
 d) _____When doing a titration, name the glassware used to determine the volume of a know concentration used to neutralization a sample?
 e) _____The name of the glassware used to suck up accurately a certain amount of liquid from a stock solution?
- f) Calculate the <u>**pH**</u> of a solution of Vinegar where the Hydrogen ion concentration is $7.9 \times 10^{-9} \text{ mol/L (2 marks)}$

10. What if Scenarios...Fill in the blank:

Fill in the blanks with the words INCREASE or DECREASE or NOTHINGfor the following sentences below(Total= /7)

a	What would happen to your %v/v of your vinegar sample solution if you unknowingly made the titration solution of NaOH stronger than it should have been.
b	Your sample was still <u>wet</u> in the filter in your % yield lab, the % yield would?
c	You added more excess chemical in your % yield lab. The % yield would?
d	You added more limiting chemical in your % yield lab. The % yield would?
e	If your titrated acid sample was <u>too pink</u> then how would that affect your %v/v?
f	Water was used to wash down the sides of an Erlenmeyer sample flask during a titration.
g	If accidentally/ unknowingly added extra vinegar to your vinegar sample during a titration??

/7)

(Total=

Short Answer: (Show work for full marks)

If 775 ml of a 3M solution of CaCl₂ was added to 500mL of a 4M solution of AgNO₃ then how much <u>AgCl</u> should be made? (Total= /4)

CaCl ₂	+ 2AgNO ₃	→ 2AgCl +	$Ca(NO_3)_2$
(110.98g/mol)	(169.87g/mol)	(143.32 g/mol)	(164.08g/mol)

2. Fructose C₆H₁₂O₆ is a natural sugar in apple juice. A person with diabetes must be aware of the quantity of sugar she consumes. The amount concentration of fructose in a certain brand of apple juice is 0.67 mol/L. What mass of fructose is present in a 250ml bottle of apple juice? (pg401 Q3) (Total= /3)

A 250ml sample of tap water is found to contain 12 ppb of an antibiotic. Determine the mass of the antibiotic in the sample. (pg 410 Q3)
 (Total= /3)

4. Titration: Use the data below to determine the mol/L then the %v/v of acetic acid (CH₃COOH) in a sample of vinegar Reinhardt's vinegar.

```
2CH_3COOH(aq) + Ca(OH)_2(l) < 2H-OH(l) + Ca(CH_3COO)_2(aq)
```

$[Ca(OH)_2]$ titration solution = 6M
Final reading on burette= 20 ml
Initial reading on burette $= 5 \text{ ml}$
Volume of Acetic acid sample = 35 mls
Density of $H_2O= 1.0 \text{ g/ml}$
Density of $CH_3COOH(1) = 1.045 \text{ g/ml}$
Density of $Ca(OH)_2 = 1.6 \text{ g/ml}$
Density Ca(CH ₃ COOH) ₂ =2.21 g/ml
Molar mass of $Ca(OH)_2 = 74.09 \text{ g/mol}$
Molar mass of CH ₃ COOH= 60.06 g/mol
Molar mass $Ca(CH_3COOH)_2 = 158.16 \text{ g/mol}$
Mass of acetic acid sample and $flask = 153g$

(Mol/L) Acetic Acid in Sample =	(Total=	/5)
---------------------------------	---------	-----

(%v/v) Acetic Acid in sample=_____(Total= /3)

A saline drip bag used by patients in hospitals have a sodium chloride **<u>concentration of 0.145 mol/L.</u>** If the patient requires **<u>2000ml</u>** of the salt solution, then <u>**calculate**</u> how you would make the solution using the starting materials below. (making from a solid? Liquid?)

Method#1:

a. A 2kg jar containing pure NaCl solid salt crushed into powder.	(Total=	/3)
---	---------	-----

Calculations:

Method#2:

b. A 5L stock solution of 6M NaCl

(Total= /3)

Calculations:

6. If you mixed 0.398g of Ca(OH)₂ (Molar mass=74.09g/mol) in 250ml of water then what would the <u>**pH**</u> be assuming all the base is strong? (4)

Equations and Data

- > ppm = (mass of solute / mass of solution) $x10^6$
- > ppb = (mass of solute / mass of solution) $x10^9$
- > $C=(V_{solute} / V_{sol'n}) \times 100\%$
- > $C = (Mass(g)_{Solute} / V(ml)_{sol'n}) \times 100\%$
- > C = mol/L
- > 1mole = 6.02×10^{23}
- > 1nanogram= 10^{-9} g
- > 1mmol= 10^{-3} mol
- > 1g water =1ml water @ regular room temp
- > density= mass/volume
- > pH + pOH = 14
- \rightarrow pH = -log[H⁺]
- > pOH= -log[OH⁻]